

High-Speed Hybrid Reluctance Motor with Anisotropic Materials

Edwin Chang General Motors June 22, 2021 ELT093

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

gm

Timeline

Start Date: October 2016End Date: December 2020

Duration: 4 years

Completion: 100%

Barriers

- Implement lower cost HRE-free magnets with higher coercivity and designs protecting against demagnetization
- Design improved Cu-Al interfaces for better rotor efficiency and reduced cost
- Validate motor performance and endurance for vehicle reliability

Budget

Total funding \$4.64M - DOE Share \$2.44M - GM Share \$7.08M - Total 2020 funding \$484k - DOE Share \$\$257k - GM Share \$306k - Total

Project Lead

General Motors

Partner

Oakridge National Lab

Objective

Design and validate three motor variants with no heavy rare earth (HRE) content: Heavy rare earth elements have limited sources and price volatility

- Variant 1: HRE-free permanent magnet (PM) motor
- Variant 2: Synchronous reluctance motor (SyRM) with HRE-free PM assist
- Variant 3: Hybrid induction motor with cast aluminum (Al) and insert copper (Cu) bars

Variants should be capable of meeting the following DoE year 2020 targets:

- Cost (\$/kW) less than \$4.7
- Specific Power (kW/kg) greater than 1.6
- Power density (kW/L) greater than 5.7

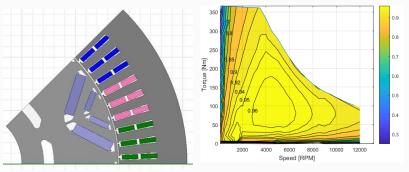
, 3	P	odication Prince	an Hation	ode tratic la mo
Variant 1	HRE-free PM motor	х		
Variant 2	SyRM with HRE-free PM assist		Х	
Variant 3	Hybrid Cu-Al Induction Motor	Х	Х	

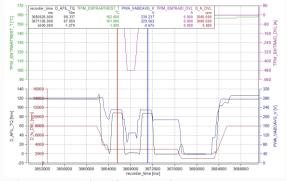
Approach to barriers

- HRE-free magnets provide less energy-product for motors, and experience permanen demagnetization at lower temperatures
 - Identify capable materials and validate and test on a magnet level
 - Perform demagnetization tests on Variant 1 and Variant 2 on a rotor level to confirm simulation results
- Cu-cast Al interfaces tend to be poor and fail rapidly under motor conditions
 - Demonstrate improved Cu-Al interfaces on cast coupons
 - Optimize rotor casting parameters for best Cu-Al interfaces and demonstrate rotor reliability through fatigue testing
- Many efforts to improve demagnetization resistance or power come at the expense of high-speed mechanical strength
 - Validate novel designs compensating for mechanical strength while maintaining torque

Milestones

Milestone	Description	Planned Completion Date								
Budget Period 2 (Jan 2018 – May 2019)										
Rotor and Stator Fabricated and Assembled	Rotor and Stator build complete and evaluate weight based on the active machine materials	Complete								
Rotor High Speed Evaluation Complete	High Speed evaluation accomplished with report of burst test results	Complete								
Production Process Developed	Production processes identified to achieve a cost production goal of \$4.7/kW.	Complete								
Motor cost in alignment with project targets	Motor cost assessment complete and used to construct test plan that aims to achieve a specific power of 1.6 kW/kg and power density of 5.7 kW/Liter	Complete								
Bu	dget Period 3 (May 2019 - December 2020)									
Initial Preparation for Motor Testing complete	Electric traction motors have been built and prepared for testing	Complete								
Motor Calibration Complete	Electric machine calibration completed for all motors	Complete								
Fatigue Tests Complete	Durability testing on two of the three motor types will be completed	Complete								
Performance Evaluation Complete	Performance Evaluation and Correlation – the results of performance testing will be compared to simulation results (Actual vs. Predicted).	Complete 2020								


Technical Accomplishments and progress

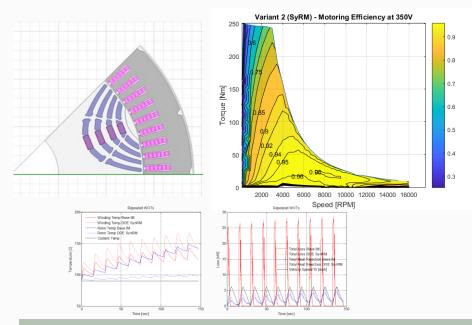


 3 Variant designs were designed to meet vehicle electromagnetic performance, mechanical, and thermal requirements

	HRE-free PM Motor	Synchronous Reluctance Motor with HRE-free PM Assist	Hybrid Induction Motor with Insert Cu Bars and Cast Al End-rings
Stator Outer Diameter (mm)	208	190	190
Rotor Outer Diameter (mm)	139.5	139.1	139.1
Stator Core Length (mm)	200	100	100
Power (kW)	146	76	88
Torque (N-m)	372	249	310
Max RPM	12000	16650	12950
Nominal Voltage (V)	350	350	350
Maximum Current (Arms)	400	450	450

Variant 1 - HRE-free PM motor

Burst testing

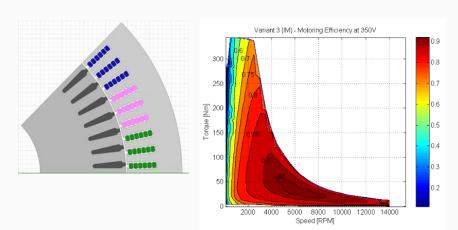

Demagnetization testing

Testing demonstrates demagnetization resistance consistent meets operating conditions and efficiency as predicted by the initial design.

Measured power within 1.5% of predicted power

Performance									
	Mass Volume Power Specific Power Power Density Cost								
Target				≥1.6 kW/kilogram	≥5.7 kW/Liter	\$4.7/kW			
Variant 1	35.2 kg	6.6 L	146 kW	4.1 kW/kg	22.1 kW/L	Meets			

Variant 2 - SyRM with HRE-free PM assist


Burst testing

	Demagnetization Attempt Recording												
Attempt Number	Speed	Max Dwell Torque [Nm]	Id [A]	Iq [A]	BEMF Avg [V]	Max Rotor Temp Reached [degC]	Max Stator Temp Reached [degC]	Voltage [V]	ATF Temp [C]	Flow	Stator Flow [LPM]	Bearing Flow [LPM]	Date Taken
1	11,000	13 (1x)	-520	0	10.4	106	95	300	90	1.35/1	4	0.9	10-Aug
2	11,000	13 (1x)	-520	0	10.1	117	104	300	100	1.35/1	4	0.9	10-Aug
3	11,000	13 (7x)	-520	0	10	120	106	300	100	1.35/1	4	0.9	10-Aug
4	11,000	13 (7x)	-520	0	9.8	127	110	300	110	1.35/1	4	0.9	10-Aug
5	11,000	13 (7x)	-520	0	9.8	127	110	300	110	1.35/1	4	0.9	10-Aug
6	9,500	20 (7x)	-520	0	10.4	106	91	300	90	1	4	0.9	11-Aug
7	11,000	13 (7x)	-520	0	9.3	144	133	300	130	1	4	0.9	11-Aug
8	11,000	13 (7x)	-520	0	9	154	145	300	138	1.35	4	0.9	11-Aug
9	5,000	60 (1x)	-520	0	9.8	127	135	300	120	1.35	4	0.9	11-Aug
10	5,000	71 (1x)	-520	0	8.7	164	165	300	135	1.35	4	0.9	13-Aug
11	5,000	71 (5x)	-520	0	8.5	170	170	300	135	1.35	4	0.9	13-Aug
12	5,000	71 (7x)	-520	0	8.4	173	172	300	138	1.35	4	0.9	13-Aug
12	5,000	71 (70)	-520	0	9.76	177	105	200	120	1 25	2.5	0.0	12 Aug

Testing demonstrates high speed endurance consistent with expectations and efficiency as predicted by the initial design. Peak power is lower than predicted by 12%. Motor is resistant to demagnetization well above expected rotor temperatures

Performance										
	Mass	Volume	Power	Specific Power	Power Density	Cost				
Target				≥1.6 kW/kilogram	≥5.7 kW/Liter	\$4.7/kW				
Variant 2	24.1 kg	5.4 L	<mark>76 kW</mark>	3.15 kW/kg	<mark>14.1 kW/L</mark>	Does not meet				

Variant 3 - Hybrid Cu-Al induction motor

Testing demonstrates high speed endurance consistent with expectations and efficiency as predicted by the initial design. Power is slightly higher than predicted by 4.5%

Performance									
	Mass	Volume	Power	Specific Power	Power Density	Cost			
Target				≥1.6 kW/kilogram	≥5.7 kW/Liter	\$4.7/kW			
Variant 3	27.3 kg	5.4 L	88 kW	3.2 kW/kg	16.3 kW/L	Does not meet			

Collaboration and Coordination with Other Institutions

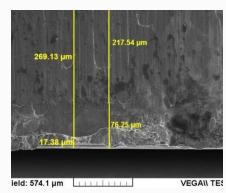
Oakridge National Lab collaboration (Partner)

Prepared with assistance from Tim Burress, Ercan Cakmak, Yanli Wang

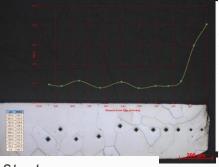
Motor steel sample analysis

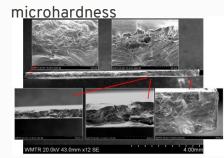
- Edge analysis optical analysis of sheared edge from stamping operation
- Microhardness harness in various locations in cross-section
- Compositional analysis to determine composition of material
- Coating thickness important for stacking factor and resistance between laminations
- Coating composition same as above
- Density
- Electromagnetic properties permeability, loss, and exciting power vs flux density and frequency
- Tensile and fatigue

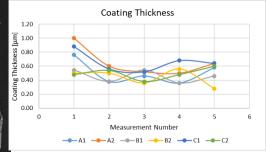
Induction motor bar analysis

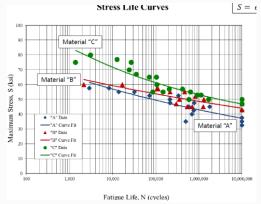

- Porosity of casting
- Tensile and fatigue testing of copper/cast aluminum interface

Collaboration and Coordination with Other Institutions




Cu-Al interface testing


Stamped edge evaluation


Steel

Fatigue fractography

Coating evaluation

Fatigue testing

Summary

- All three designs meet DoE performance targets and address initial design barriers on a materials level.
- Testing confirms performance and durability of the three machine variants

Performance									
	Mass	Volume	Power	Specific Power	Power Density	Cost			
Target 2020				≥1.6 kW/kilogram	≥5.7 kW/L	≥\$4.7/kW			
Variant 1	35.2 kg	6.6 L	146 kW	4.1 kW/kg	22.1 kW/L	Meets 2020			
Variant 2	24.1 kg	5.4 L	76 kW	3.2 kW/kg	14.1 kW/L	Does not meet 2020			
Variant 3	27.3 kg	5.4 L	88 kW	3.2 kW/kg	16.3 kW/L	Does not meet 2020			

Technical team

Electric Motor Design

Edwin Chang

Jorge Cintron-Rivera

Sherry Du

Edward Kaiser

Jihyun Kim

 $Yew\ Sum\ Leong$

Jingchuan Li

Josh Rosenberg

Validation

Edgar Oviedo Monsivais

Antonio Aviles

Anna Kulpa

Dave Rzucidlo

Brian Schulze

Matthew Tucker

Mark Wyrick

Salsabil Salah

Calibration

Michael Rios

Cristian Lopez-Martinez

Mehdi Rexha

Manufacturing

William Barlomiej

Jeffrey Best

Eric Ciavarelli

Edward Eaglen III

Dan Martin

Karl Nagengast

Ken Roumayah

Scott Saranen

Mithun Sunny

Scott Thompson

John Varughese

Other

Margarita Thompson (Materials)

John Agapiou (R&D)

